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SUMMARY

As part of a transonic research progr_n the sensitivity of downwash

at the tail plane to fairly systematic changes in wing plan form and

thickness has been evaluated over a Mach number range of approximately

0.6 to 1.1, utilizing the transonic-bump technique. This paper presents

a summary of information obtained from ii transonic-bump investigations

of wing and wing-fuselage configurations and compares the experimental

results with theoretical estimations made for subsonic and supersonic

Mach numbers.

Of the many variables investigated_ the most powerful single factor

influencing the character of downwash variation with Mach number appears

to be wing thickness ratio. If the wing thickness is such that erratic

lift variations are present at transonic speeds, similar effects on down-

wash can be expected. Available methods for estimating the downwash

slope _6/_C L at high subsonic speeds or low supersonic speeds are prob-

ably sufficiently accurate for preliminary design purposes when applied

at low lift coefficients, particularly for wings of small thickness ratio.

With increases in sweep angle or aspect ratio, and decreases in taper

ratio, the nonlinear downwash characteristics occurred at lower lift

coefficients and were more severe; whereas changes in thickness ratio
had little effect. The onset of nonlinear downwash characteristics was

delayed to considerably higher lift coefficients and the severity of the

nonlinearities was reduced considerably as the speed was increased from

subsonic to low supersonic.

lsupersedes recently declassified NACA Research Memorandum L52122

by Joseph Well 3 George S. Campbell, and Margaret S. Diederich, 1952.
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INTRODUCTION

Until recently, little information of a systematic nature has been

available relative to the effects of wing geometry on downwash charac-

teristics at transonic speeds. As part of a transonic research program 3
however, the effects of changes in wing plan form and thickness were

investigated through a Mach number range of approximately 0.6 to 1.1 by

utilizing the transonic-bump method. The results of ll such studies are
published in references 1 to ll.

The purpose of the present paper is to present a summary of the

information gleaned from the various transonic-bump investigations of

wing and wing-fuselage configurations at two representative tail heights

and to compare these results with theoretical estimations made in the

subsonic and supersonic Mach number range. At subsonic speeds 3 classical
horseshoe-vortex methods were used to calculate theoretical downwash

values. At supersonic Mach numbers, a recently developed line-vortex

method (ref. 12) has been employed for similar downwash calculations.

The theoretical results so obtained have been extended beyond the extremes

of the experimental Mach number range so that downwash estimates are made

available for this systematic series of wings at Mach numbers up to _.

SYMBOLS AND ABBREVIATIONS

E

E t

_E T

CL

q

S

M

b

bt

downwash angle, deg

floating angle of free floating tails (corresponds to e in

refs. 1 to ll), deg

increment in floating angle from zero lift, deg

angle of attack, deg

Lift
lift coefficient,

qS

dynamic pressure, lb/sq ft

wing area, sq ft

Mach number

wing span, ft

tail span, ft
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X

Y

z

Ac/4

A

t

cZc

CLCav

c Z

c

Cav

Subscripts:

t

av

e

distance between quarter chord of wing mean aerodynamic chord

and tail mean aerodynamic chord, wing semispans

spanwise distance from plane of symmetry, wing semispans

tail height with respect to wing-chord plane, wing semispans

distance from tail pivot axis to tail lifting line; lifting

line and quarter-chord line assumed coincident at subsonic

speeds

sweep of wing quarter-chord line, deg

aspect ratio

taper ratio

maximum streamwise-section wing thickness, ft

span load coefficient

section-lift coefficient

local chord

average wing chord, S/b

mean aerodynamic chord, 2 f,b/2 c2dy
S_0

tail

average

effective
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EXPERIMENTAL METHODS

Scope of Test Data

Downwash characteristics are presented in references 1 to ll for the

wing and wing-fuselage configurations shown on table I. It is evident

that the configurations investigated were sufficiently systematic to

afford limited studies of the effects of sweepback, aspect ratio, taper

ratio, and airfoil thickness. Data were obtained for five tall heights

corresponding to a tail-height range of about ±40 percent semlspan rela-

tive to the wing-chord plane extended. For reasons dictated by the test

setup, the distance between the model pivot and location of the floating

tails was maintained constant; therefore, inasmuch as wing area also

remained constant, the ratio of tail length to wing semlspan was a func-

tion of the aspect ratio. (See table I.) An angle-of-attack range of
from about -2° to lO ° was covered over a Mach number range of about 0.6

to 1.1.

Because of the large bulk of downwash information obtained in the

experimental investigations reported in references 1 to ll# a complete

analysis at all tail heights was deemed impractical. The analysis

included in the present paper, therefore, has been limited to tail heights

on the chord plane extended and 30 percent of the wing semispan above the

chord plane extended.

Test Technique

The experimental investigations were conducted in the Langley high-

speed 7- by lO-foot tunnel by utilizing an adaptation of the NACA wing-

flow technique for obtaining transonic speeds. The method used involves

mounting a semispanmodel in the high-velocity flow field generated over

the curved surface of a bump located on the tunnel floor. A more com-

plete description of the transonic-bump test technique is presented in

reference 15.

Effective downwash angles were determined by measuring the floating

angles of a number of sweptback free-floating tails (wing 4 plan form of

table I) located behind the various models. Typical test setups are

shown in figure 1. Data were obtained for the five tail locations

shown in two series of runs. (See fig. l(a).) It was found from a

preliminary investigation that the 2 inch tall spacing obtained in this

manner enabled design information to be acquired with negligible inter-

ference between floating tails at transonic speeds. For studies of the

downwash characteristics of the wing-fuselage configurations the cen-

trally located tail was replaced by a geometrically similar tail mounted

on the fuselage; therefore, a 0.4 inch more outboard spanwise region was
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surveyed by the tail. (See fig. l(b).) Further details of the test
technique maybe found in references i to ii.

No quantitative information is available as to the effect on wing-
span-load distribution of factors that stem directly from the bump
technique such as flow curvature, Machnumbergradients, and low test
Reynolds number (generally of the order of 6 x i0_ to 8 X lOJ). As later
concluded from the theoretical analysis, effects on span loading exert
a muchgreater influence on downwashfor tail locations on the chord
plane extended than for considerably higher tail positions.

It should be pointed out that the tail floating angles obtained were
a measureof the angle of zero pitching momentabout the swept-tail pivot
axis rather than the angle of zero lift (true effective downwashangle).
The discrepancy between downwashand floating angles, however3 caused by
the presence of spanwise and ehordwise downwashgradients was estimated
to be generally less than i0 percent of the downwashangle for tails
located on the chord plane extended and essentially zero for the high
tail position analyzed.

THEORETICALMETHODS

Subsonic Method

Subsonic values of point downwashwere calculated by summingthe
downwashcontributions of 21 horseshoe vortices located along the wing
quarter-chord line and having strengths determined by the theoretical
span-load distribution. The analytical expression for the downwash
induced by a single horseshoe vortex is given on page 197 of Glauert's
text (ref. 14). Numerical values for the downwashin the z = 0 plane
of a rectangular vortex were obtained from the tables of reference 15_
similar values were calculated for the z = 0.3 plane. Since the time
of these calculations, downwashin the field of a single horseshoe vortex
has been presented for several tail heights in reference 16.

Twomethods were used to calculate the wing-span-load distributions
which determined the strength of the individual vortices. The most
readily available wing loadings are those obtained from Weissinger's
method and are given in the charts of reference 17. However, compari-
sons of Weissinger's 7-point solutions with lifting-surface theory and
with experiment (refs. 18 and 19) indicate unsatisfactory prediction of
loading shape for wings having a combination of moderately high sweep
and aspect ratio. Somewhatmore reliable loading shapes may be calcu-
lated as in reference 18 without undue labor. Wing loadings obtained
from references 17 and 18 and the downwashfrom such loadings are com-
pared in the present paper.
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Results of calculations for several of the plan forms considered
in this paper indicated that Machnumbervariations in the subsonic
range had a negligible effect on the shapes of the span-loading curves.
It therefore was considered justifiable to account for Machnumbereffects
on 8_/8CL by using the incompressible span loadings in conjunction with

1
an increase in tail length by the ratio Such a procedure

_l - M2
results from application of the three-dimensional Prandtl-Glauert trans-
formation. (See ref. 20.)

Supersonic Method

The theoretical supersonic downwashin this paper was calculated
using equations (41) and (46) of reference 12 for the downwashin the
field of swept and unswept supersonic line vortices. Calculations made
for representative plan forms and tail locations indicated that a con-
siderable saving in labor could be effected by replacement of the integral
terms in these equations with equivalent finite summations. At the same
time, accuracy was not perceptibly impaired whenthe span loading was
broken up into 20 steps across the span. Hence, the theoretical super-
sonic downwashpresented in this paper was calculated by using such a
finite summation. The sweepand chordwise location of the line vortex
was chosen to approximate those of the curved line of local centers of
pressure.

The supersonic loadings presented in this paper and used in the
downwashcalculations are subject to the usual limitations of small
perturbation theory. In the case of wings having supersonic leading
and trailing edges, the span loading was calculated by evaluating the
potential at the trailing edge, the expression for velocity potential
being given in reference 21. Design charts are now available in refer-
ence 22 for the span loading of such wings. Cohen's method (refs. 23
to 25) was used to calculate the loading of wings having subsonic edges.
For the intermediate case of subsonic leading edge and supersonic
trailing edge, the expressions of reference 26 for local pressure were
integrated analytically to provide spanwise loading.

Application

The theoretical downwash presented is directly applicable to iso-

lated wing configurations. The effects of wing-body interference have

not been considered. The principal effect of this interference on wing

span loading probably is experienced inboard near the Juncture and, as

will be shown later, is apt to produce the largest effect on the down-

wash characteristics of tails located on the wake center line.
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For most of the calculations the vortex sheet was assumed to be

flat with displacement and rolling-up of the trailing vortex neglected.

This assumption is believed justified in the low-lift range, particularly

in view of the fact that the configurations studied were close-coupled

and generally of moderate aspect ratio.

As will be shown later; in certain instances it was found desirable

to estimate the downwash on the assumption that the entire semispan

trailing vorticity could be concentrated in a single trailing vortex.

For the low-lift range in which the estimations were applied, vortex

displacement was neglected. The method used for these estimations may

be found in reference 27.

As mentioned in a previous section_ the experimental measurements

did not represent true effective downwash angles; but rather a measure

of the angle of zero pitching moment of the floating tail about its pivot

axis. In order to compare theory with experiment it therefore was neces-

sary to compute the tail floating angles for the swept tail used (wing 4

plan form). This computation was made by use of the following downwash-

weighting relationship

1 /C7,C\ / y \
(i)

cZc
where

CLCav

and 13.

for the assumed 45° swept tail can be found in figures 4

The theoretical point downwash has been used not only to obtain the

floating angles for correlation with experiment but also to obtain the

theoretical effects of wing geometry on the downwash characteristics

through a Mach number range considerably beyond the experimental range.

For the latter computations a measure of the angle of zero lift of the

floating tail (effective downwash) was computed by the following relation

_CL \CLCav] \bt/2]
(2)
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PRESENTATION OF RESULTS

A summary of figures presenting the results of the subject inves-

tigation is as follows:

Figures

Theoretical span-load distributions and spanwise downwash

gradients ......................... 2 to 19

Theoretical variation of weighted downwash slope with Mach

number .......................... 20 to 31

Basic experimental data ................... 32 to 42

Experimental and estimated sweep effects:

Variations with Mach number ................ 43 to 47

Variations with lift coefficient ............. 48 to 51

Experimental and estimated aspect-ratio effects:

Ac/4 = 35 ° ........................ 52 to 54

Ac/$ = 45 ° 55 to 57

Ac/4 = 60° . . ." ...................... 58 to 60

Experimental and estimated taper ratio effects:

Ac/4 = 35° ......................... 61 to 63

Ac/4 = 45° ......................... 64 to 66

Experimental and estimated effects of thickness ratio:

Ac/_ : oo ........................

_/4 = 45° .......................

67 and 68

69 and 70

Summary of correlation between estimated and experimental results:

M = 0.8 ............................ 71
M =i.i ............................. 72

ANALYS IS AND D ISCUSS ION

Theoretical Downwash

Subsonic.- The comparison of the span-load distributions obtained

from the charts of reference 17 and the methods of reference 18 is fairly
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good except for the wings of the highest sweep angles and aspect ratios

(wings 5 and 7). (See figs. 5 and 7.) Decreasing wing taper ratio,

sweep angle, or aspect ratio is shown to produce a more favorable com-

parison between the two methods. It is interesting to note that, whereas

differences in span-load gradient attributable to the method of calculation

represent sizeable differences in estimated downwash angle per unit lift

for tails located on the wing-chord plane extended, very little sensi-

tivity to the exact shape of the span-loading curve is indicated when

the tail surface is located 30 percent of the wing semispan above the

chord plane extended.

In view of the fact that the methods of reference 17 are apt to

produce somewhat erroneous results for certain of the wings considered,

all subsonic downwash estimations presented and discussed in the remainder

of this paper utilize span loadings calculated by the methods of refer-

ence 18. The values of lift-curve slope and the lateral center of pres-

sure for the incompressible finite-step loadings are presented in table II.

An inspection of figures 2 to i0 indicates in many instances a rather

large spanwise gradient of 8eISC L with a minimum value occurring at the

plane of symmetry. For the higher tail position investigated (z = 0.3),

the gradients in 8e/8C L are generally negligible.

Increasing the tail length to infinity generally reduced the down-

wash angles by about i0 to 15 percent. This magnitude also represents

the maximum first-order effects of compressibility on the subsonic down-

wash angles_ since the downwash angles in compressible flow can be

obtained by calculating the incompressible downwash with the tail length

i
increased by

_ _ M2

Supersonic.- The span-load distributions for the series of wings

investigated showed appreciable effects of Mach number at supersonic

speeds, which is in marked contrast to the negligible changes in wing

loading found at subsonic speeds. (See figs. ii to 19.) As may be seen

from the span-loading shapes or from the values of lateral center of

pressure, increasing Mach number at supersonic speeds shifted the cen-

ter of load progressively outboard in all instances with the exception

of the delta wing (fig. 18) for which no change in loading shape is

indicated.

Spanwise downwash gradients in the chord plane extended were gen-

erally much greater at supersonic speeds than at subsonic speeds. Inas-

much as relatively small differences are shown between the downwash char-

acteristics for finite and infinite tail lengths, it is evident that the

large spanwise gradients are primarily attributable to the shape of the

load-grading curve rather than caused by fundamental differences in the
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nature of the subsonic and supersonic calculations. Raising the tail
0.5 semispan above the chord plane greatly reduced the spanwise downwash
gradients and generally reduced the effect of Machnumberon 8e/8CL.

Variations with Mach number.- The theoretical point values of 8e/8C L

presented in figures 2 to 19 were weighted by use of equation (2) to

obtain estimated (Be/eL) e variations with Mach number for the nine plan

forms investigated and for the tail configurations shown in table I. The

variation of (_eIck_)e with Mach number was calculated by a similar

weighting process. Estimations are presented for tail heights of 0

and 0.3 semispan above the wing-chord plane extended at finite and infi-

nite tail lengths. (See figs. 20 to }l.) Although it is realized that

the "Trefftz plane" results are physically inaccurate because of wake-

distortion effects, the Infinlte-tail-length estimations were included

because they give at least a fair evaluation of the differences between

rather short coupled configurations and those having large tail lengths.

An arbitrary dashed-line fairing has been used in the Mach number range

from M = 0.8 to 1.1 to connect the subsonic and supersonic values of

(_e/CL) e and (_e/_C_)e.

An inspection of the various curves (figs. 20 to 31) shows several

interesting differences between the subsonic and supersonicdownwash

characteristics. The downwash slopes are a maximum in the chord plane

extended at subsonic speeds but this is not always true at sUpersonic

speeds. Increase in tall length reduced (8£/_CL) e and (Se/(k_)e at

subsonic speeds but the reverse condition was generally indicated at

supersonic speeds.

From the data it would appear that the smallest change in downwash

parameter withMaohnumberat low CL mightbe e ectedfor
a hightail at relatively large tall length. In the sweep series, Mach

number effects were smallest for the 60 ° configuration (fig. 21). At

all speeds the wings having lowest aspect ratio and taper ratio had the

largest computed downwash slopes.

Experimental Downwash

Effect of sweep angle.- The basic data of figures 32 to 42 have

been used to determine the variation of 8£'/_C L with Mach number in the

low-lift range. For the wing-alone condition, the unswept wing gener-

ally produced the highest value of 8e'/_C L and also demonstrated the

most erratic changes in _e'/_C L above M = 0.85. (See fig. 45.) It

should be pointed out that the unswept-wlng data (ref. l) showed similar
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irregularities in the lateral center of pressure. This result indicates
that sizeable changes occur in the span load distribution of the unswept
wing at transonic speeds which are directly reflected in _c'/$C L. The
sweptback wings showedrather small variations of _'/_C L with M par-
ticularly at z = 0.3.

The addition of the fuselage had the largest effect on the wings of
greatest sweep. For the tail located on the chord plane extended, it
should be rememberedthat the increases in _c'/_CL shownfor the 45° and
60° wings are at least partially caused by the more outboard spanwise
location of the floating tail in conjunction with large spanwise down-
wash gradients indicated by theory. (See fig. 43.)

Comparisons of the experimental and estimated floating-angle param-
eter 8_'/8C L for the sweepseries as a function of Machnumber are
shownin figures 44 to 47. A smooth arbitrary fairing was used in the
Mach numberrange between lift-force break and the lowest point for
which supersonic estimations were made. In contradiction with what
might be anticipated, the floating angles for the wing-fuselage configu-
rations agree better with estimations for the low tail position at sub-
sonic speeds than do the corresponding wing-alone configurations. For
z = 0 the estimated floating-angle slope is generally considerably
higher than the experimental results. (See figs. 44 and 45.) The over-
all agreementbetween experimental and estimated results is seen to be
considerably better for z = 0.3 (figs. 46 and 47), however, perhaps
because 8c'/8C L is more dependent upon the total lift at the higher
tail position and less influenced by small deviations in the span
loading. (See figs. 44 and 46.)

The variations of floating-angle increments with lift coefficient
are presented in figures 48 to 51 for Machnumbers of 0.8 and i.i. Only
limited conclusions regarding the downwashcharacteristics at higher lift
coefficients can be drawn from these data because of the restricted angle
range obtained in the original investigations. It is apparent, however,
that the extent of the linear range of A_' against CL decreases with
increasing wing sweep. The lift coefficient at which the lateral center
of pressure departs from linearity (refs. i to ii) has been indicated
in the figures by a small vertical tick. It is evident that the onset
of nonlinearity in variation of _c' with CL is directly related to
the lift coefficient at which changes in span loading are knownto occur.
For the swept wings, the center of pressure moves inboard at the higher
lift coefficients and a corresponding increase in 8¢'/8C L is indicated;
for the unswept wing the reverse is true. At M = i.i, changes in span
loading are delayed to a higher lift coefficient than at M = 0.8 and
this effect is reflected in the extension of linear c'.
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In view of the preceding discussion, it is apparent that corre-
lation between experimental and predicted results can be defined by the

slopes shown in figures 44 to 47 up to the lift coefficients indicated

by the ticks in figures 48 to 51.

Effect of aspect ratio.- The effects of aspect ratio on _g'/_C L

are presented in figures 52 to 60. Increasing wing aspect ratio almost

always reduced the floating-angle slope and produced a somewhat smaller

variation of 8e'/_C L with Mach number. A sizeable but rather incon-

sistent fuselage effect is also shown. (See figs. 52, 59, and 58.)

The most significant effect of aspect ratio on the floating-angle

characteristics at the higher lift coefficients is indicated for the

45 ° swept plan form which shows a large increase in 8e'/_C L above

CL _ 0.4 for the wing of aspect ratio 6 at subsonic speeds. Although

the limited lift range precludes a definite conclusion, it is apparent

that the linearity of the curve of A_' against CL is maintained to

a somewhat higher CL for the wing with an aspect ratio of 4. The fore-

going trends, which may be affected by the low scale of the test, are

directly traceable to earlier occurrence of flow changes on the higher-

aspect-ratlo wing and were reflected by movements of the spanwlse center

of pressure. (See vertical ticks, fig. 56.)

In general, the effects of aspect ratio as determined experimentally

were either always less than or approximately equal to the estimated

increments. The largest discrepancies between the estimated and experi-

mental results were evident for the wing with an aspect ratio of 2 and

Ac/4 = 60 ° (fig. 58). For this wing the chord-plane-extended slopes

were much smaller than those estimated by assuming no distortion of the

vortex sheet. This latter effect becomes more critical as the aspect

ratio is reduced and may be responsible in part for the very poor

agreement.

Effects of taper ratio.- For the two wings having approximately

35 ° sweep the effects of changing wing taper ratio were considerably less

than estimated for z = 0 at subsonic speeds. At low supersonic speeds,

however, the agreement between experiment and estimation was quite good.

(See fig. 61. ) Macn number effects were not materially greater for

wings of either taper ratio.

For the triangular wing, changes in wing span loading, as indicated

by the vertical ticks on figure 62, occurred at considerably lower llft

coefficients than for the wing of k = 0.6 and this effect was generally

reflected in the earlier occurrence of unstable trends in the higher lift

downwash characteristics. The addition of the fuselage to the triangular

wing produced more unstable downwash characteristics in the higher lift

range throughout the speed range.
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Decreasing the taper ratio from 0.6 to 0.3 on the 45° swept plan
form delayed and reduced the pronounced decrease in _'/_C L for the wing
fuselage condition (z = O) at transonic speeds. (See fig. 64.) The
agreement between experiment and estimations is seen to be rather poor
for the low-tail position. For the tail in the raised position, the
experimental results indicate a rather ragged variation with M, but the
absolute values agree fairly well with estimations. The data are insuf-
ficient to explain the cause of the sharp humpin the variation of -_'/_C L
between M = 1.05 and I.i for k = 0.3, z = 0.30.

Effects of wing thickness.- The effects of reducing the thickness

of the unswept wing from 6 4o 4 percent and of the 45° swept wing of

aspect ratio 6 from 9 to 6 percent are presented in figures 67 to 70.

It is evident that, for both plan forms, reducing the wing thickness

produced better agreement between the estimated and experimental results

at transonic speeds.

The largest effects of thickness were present for the swept wing

where, for the 9-percent-thick configuration, loss in tip loading in the

low-lift range near M = 1.0 (ref. 8) caused a large increase in _['/$C L.

For general application, a rough idea of the combination of thickness

ratio, aspect ratio, and sweep for which erratic downwash variations might

be expected in the low-lift range at transonic speeds can be obtained from

references 28 and 29. The increase in _c'/_C L for the swept wing in the

higher lift range at subsonic speeds was little affected by thickness

changes.

Summary of correlation between experimental and estimated results.-

The values of _c/bC L at M = 0.8 estimated by the assumption of a flat

vortex sheet were almost always considerably higher than values obtained

from the experimental wing-alone data. (See fig. 71.) Surprisingly

enough, the addition of the fuselage actually resulted in somewhat better

correlation. In the higher tail location considerably better agreement

was obtained with most points falling within the lines indicating

±20 percent departure from the line of perfect agreement. With the

possible exception of wing 9_ it might be expected that the assumption

of a flat vortex sheet should be valid at low CL. Nevertheless_ inas-

much as the correlation for the chord plane extended results was con-

sidered rather poor; it was decided to calculate the downwash on the

improbable assumption that the trailing vorticity was completely rolled

up into two discrete vortices. The correlation obtained by use of this

method is shown by the flagged symbols of figure 71. It is seen that

the agreement using a single horseshoe vortex is much improved for the

low tail position. The correlation for z = 0.30 is essentially the

same for either method and is considered acceptable for preliminary

design estimates.
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A correlation between experimental _£'/_C L at M - 1.1 and values
calculated on the basis of line-vortex theory (assuming a flat sheet)
is presented in figure 72. As was shownin the subsonic correlation,
the degree to which 8e'/_C L can be predicted is considerably better for
z = 0.30 than for tails located on the wake center line. The presence
of the fuselage did not materially affect the correlation. As previously
pointed out, increasing the thickness ratio from 6 percent (wing 7) to
9 percent (wing 8) results in large span load changes which produce a
detrimental effect on the correlation.

The replacement of the wing by a single horseshoe vortex, which was
shownto work so well at M = 0.8 was also tried at M = i.i. The
general correlation at M = i.i, however, wasmaterially worse whenthe
rolled-up vortex assumption was used, and it is not suggested that this
approach be used in most instances even for preliminary estimates. It
might be added, however, that the experimental data for wing 9 (A = 2,
Ac/4 = 66o), which were in very poor agreement with the linear theory
result at z = O, were brought into almost perfect agreement with the
value estimated on the assumption of a rolled-up vortex} this result indi-
cates that the assumption of a rolled-up vortex might still offer the
best approach at low supersonic speeds for wings of very low aspect ratio.

CONCLUDINGREMARKS

A study of the effects of plan form and thickness on the estimated
and experimentally determined transonic downwashcharacteristics of
various wing and wing fuselage configurations indicated a numberof points
of special interest which are summarized in the following paragraphs.

The thin wings investigated in the present paper generally showed
rather smooth transonic downwashcharacteristics with no important con-
sistent effects of sweepangle, aspect ratio, taper ratio, or tail height
on the variation of the rate of change of downwashslope 8_/8CL with
Machnumber in the low lift range. Although data pertaining to thick-
ness effects were meager, indications were that the use of wings having
thickness large enough to produce erratic variations of lift slope at
transonic speeds very likely will produce similar erratic variations on
downwashcharacteristics. The addition of the fuselage to the isolated
wing affected the absolute magnitude of downwashslope more than it
affected the variation of the downwashslope with Machnumber.

At subsonic speeds, a somewhatbetter correlation between estimated
and experimental downwashslope _/_C L was obtained for tails located
on the chord plane extended by the physically improbable assumption of a
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completely rolled-up vortex sheet instead of a flat vortex sheet. For
a tail position considerably above the wake center line_ assumption of
either a flat or rolled-up vortex sheet gave an acceptable correlation
with experiment. At low supersonic speeds use of line-vortex theory
with a flat vortex sheet produced results that were in fair agreement
with experiment.

Any conclusions drawn concerning the downwashcharacteristics at
higher lift coefficients are somewhatrestricted because of the limited
angle-of-attack range of most of the test data. It was found; however_
that the lateral center-of-pressure data obtained in the investigations
of the various wings could be used to determine the lift coefficient at
which nonlinearities in downwashmight be expected at all Machnumbers.
Increase in sweepangle and aspect ratio and decrease in taper ratio pro-
duced earlier and more pronounced increases in downwash slope at higher

lift coefficients; whereas thickness change had little effect. The onset

of nonlinear downwash characteristics was delayed to considerably higher

lift coefficients and the severity of the nonlinearities reduced con-

siderably as the speed was increased from subsonic to low supersonic.

Langley Aeronautical Laboratory,

National Advisory Committee for Aeronautics_

Langley Field; Va._ September 19, 1952.
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Figure 44.- Comparison of experimental and estimated variation of

floating-angle parameter _'/_C L with Mach number for various

sweep angles. Wing alone; z : O; A = 4; Z = 0.6; _ = 0.06
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Figure 45.- Comparison of experimental and estimated variation of
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sweep angles. Wing and fuselage; z = O; A = 4; h = 0.6; _ = 0.06.
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